Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Extinction Measurements of In-Cylinder Soot Deposition in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1296
The combustion process in diesel engines deposits soot on the in-cylinder surfaces. Previous works have suggested that these soot deposits eventually break off during cylinder blow-down and the exhaust stroke and contribute significantly to exhaust soot emissions. In order to better understand this potential pathway to soot emissions, the authors recently investigated combusting fuel-jet/wall interactions in a diesel engine. This work, published as a companion paper, showed how soot escaped from the combusting fuel jet and was brought in close proximity to the wall so that it could become a deposit. The current study extends this earlier work with laser-extinction measurements of the soot-deposition rate in the same single-cylinder, heavy-duty DI diesel engine. Measurements were made by passing the beam of a CW-diode laser through a window in the piston bowl rim that was in-line with one of the fuel jets.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines

2002-03-04
2002-01-1309
Two fundamental aspects of HCCI engine combustion have been investigated using a single-zone model with time-varying compression and the full chemical-kinetic mechanisms for iso-octane, a representative liquid-phase fuel. This approach allows effects of the kinetics and thermodynamics to be isolated and evaluated in a well-characterized manner, providing an understanding of the selected fundamental processes. The computations were made using the CHEMKIN-III kinetic-rate code for an 1800 rpm operating condition. The study consists of two parts. First, low-load HCCI operation was investigated to determine the role of bulk-gas reactions as a source for HC and CO emissions. The computations show that as fueling is reduced to equivalence ratios of 0.15 and lower (very light load and idle), the bulk-gas reactions do not go to completion, leading to inefficient combustion and high emissions of HC and CO.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

2002-03-04
2002-01-0111
This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

A Universal Heat Transfer Correlation for Intake and Exhaust Flows in an Spark-Ignition Internal Combustion Engine

2002-03-04
2002-01-0372
In this paper, the available correlations proposed in the literature for the gas-side heat transfer in the intake and exhaust system of a spark-ignition internal combustion engine were surveyed. It was noticed that these only by empirically fitted constants. This similarity provided the impetus for the authors to explore if a universal correlation could be developed. Based on a scaling approach using microscales of turbulence, the authors have fixed the exponential factor on the Reynolds number and thus reduced the number of adjustable coefficients to just one; the latter can be determined from a least squares curve-fit of available experimental data. Using intake and exhaust side data, it was shown that the universal correlation The correlation coefficient of this proposed heat transfer model with all available experimental data is 0.845 for the intake side and 0.800 for the exhaust side.
Technical Paper

1-D Model of Radial Turbocharger Turbine Calibrated by Experiments

2002-03-04
2002-01-0377
The 1-D model of a radial centripetal turbine was developed for engine simulation to generalize and extrapolate the results of experiments to high pressure ratio or off-design velocity ratio using calibrated tuning coefficients. The model concerns a compressible dissipative flow in a rotating channel. It considers both bladed or vaneless turbine stators and a twin-entry stator for exhaust pulse manifolds. The experiments were used to find values of all model parameters (outlet flow angles, all loss coefficients including an impeller incidence loss) by an original method using repeated regression analysis. The model is suitable for the prediction of a turbocharger turbine operation and its optimization in 1-D simulation codes.
Technical Paper

Effects of Fuel Parameters and Diffusion Flame Lift-Off on Soot Formation in a Heavy-Duty DI Diesel Engine

2002-03-04
2002-01-0889
To better understand the factors affecting soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured in a heavy-duty, direct-injection diesel engine. Measurements were obtained at two operating conditions using two commercial diesel fuels and a range of oxygenated paraffinic fuel blends. A line-of-sight laser extinction diagnostic was improved and employed to measure the relative soot concentration within the jet (“jet-soot”) and the rates of soot-wall deposition on the piston bowl-rim. An OH chemiluminescence imaging technique was developed to determine the location of the diffusion flame and to measure the lift-off lengths of the diffusion flame to estimate the amount of oxygen entrainment in the diesel jets. Both the jet-soot and the rate of soot-wall deposition were found to decrease with increasing fuel oxygen-to-carbon ratio (O/C) over a wide range of O/C.
Technical Paper

Analysis of Scavenged Pre-Chamber for Light Duty Truck Gas Engine

2017-09-04
2017-24-0095
An ongoing research and development activities on the scavenged pre-chamber ignition system for an automotive natural gas fueled engine is presented in this paper. The experimental works have been performed in engine laboratory at steady state conditions on a gas engine with 102 mm bore and 120 mm stroke, converted to a single cylinder engine. The in-house designed scavenged pre-chamber is equipped with a spark plug, fuel supply and a miniature pressure sensor for detailed combustion diagnostics. The engine was operated at constant speed, fully open throttle valve and four different fueling modes with or without spark discharge. A partly motored mode allowed direct evaluation of the pre-chamber heat release. The experimental data acquired in this research served as a validation data for the numerical simulations. The performed tests of prototypes and calculations have recently been expanded to include 3-D flow calculations in the Ansys Fluent software.
Technical Paper

Detailed Kinetic Modeling of Conventional Gasoline at Highly Boosted Conditions and the Associated Intermediate Temperature Heat Release

2012-04-16
2012-01-1109
The combustion behavior of conventional gasoline has been numerically investigated by means of detailed chemical-kinetic modeling simulations, with particular emphasis on analyzing the chemistry of the intermediate temperature heat release (ITHR). Previous experimental work on highly boosted (up to 325 kPa absolute) HCCI combustion of gasoline (SAE 2020-01-1086) showed a steady increase in the charge temperature up to the point of hot ignition, even for conditions where the ignition point was retarded well after top dead center (TDC). Thus, sufficient energy was being released by early pre-ignition reactions resulting in temperature rise during the early part of the expansion stroke This behavior is associated with a slow pre-ignition heat release (ITHR), which is critical to keep the engine from misfiring at the very late combustion phasings required to prevent knock at high-load boosted conditions.
Technical Paper

Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition

2011-04-12
2011-01-1179
Homogeneous charge compression ignition (HCCI) has received much attention in recent years due to its ability to reduce both fuel consumption and NO emissions compared to normal spark-ignited (SI) combustion. However, due to the limited operating range of HCCI, production feasible engines will need to employ a combination of combustion strategies, such as stoichiometric SI combustion at high loads and leaner burn spark-assisted compression ignition (SACI) and HCCI at intermediate and low loads. The goal of this study was to extend the high load limit of HCCI into the SACI region while maintaining a stoichiometric equivalence ratio. Experiments were conducted on a single-cylinder research engine with fully flexible valve actuation. In-cylinder pressure rise rates and combustion stability were controlled using cooled external EGR, spark assist, and negative valve overlap. Several engine loads within the SACI regime were investigated.
Technical Paper

Influence of Natural Gas Composition on Turbocharged Stoichiometric SI Engine Performance

2012-09-10
2012-01-1647
In certain applications, the use of natural gas can be beneficial when compared to conventional road transportation fuels. Benefits include fuel diversification and CO₂ reduction, allowing future emissions regulations to be met. The use of natural gas in vehicles will also help to prepare the fuel and service infrastructure for future transition to gaseous renewable fuels. The composition of natural gas varies depending on its source, and engine manufacturers must be able to account for these differences. In order to achieve highly fuel flexible engines, the influence of fuel composition on engine properties must first be assessed. This demand is especially important for engines with high power densities. This paper summarizes knowledge acquired from engine dynamometer tests for different compositions of natural gas. Various levels of hydrocarbons and hydrogen in a mixture with methane have been tested at full load and various engine speeds.
Technical Paper

A Visualization Test Setup for Investigation of Water-Deposit Interaction in a Surrogate Rectangular Cooler Exposed to Diesel Exhaust Flow

2012-04-16
2012-01-0364
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOx emissions. The presence of a cool surface in the hot exhaust causes particulate soot deposition as well as hydrocarbon and water condensation. Fouling experienced through deposition of particulate matter and hydrocarbons results in degraded cooler effectiveness and increased pressure drop. In this study, a visualization test setup is designed and constructed so that the effect of water condensation on the deposit formation and growth at various coolant temperatures can be studied. A water-cooled surrogate rectangular channel is employed to represent the EGR cooler. One side of the channel is made of glass for visualization purposes. A medium duty diesel engine is used to generate the exhaust stream.
Technical Paper

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

2006-04-03
2006-01-0201
Premixed compression ignition low-temperature diesel combustion (PCI) can simultaneously reduce particulate matter (PM) and oxides of nitrogen (NOx). Carbon monoxide (CO) and total hydrocarbon (THC) emissions increase relative to conventional diesel combustion, however, which may necessitate the use of a diesel oxidation catalyst (DOC). For a better understanding of conventional and PCI combustion, and the operation of a platinum-based production DOC, engine-out and DOC-out exhaust hydrocarbons are speciated using gas chromatography. As combustion mode is changed from lean conventional to lean PCI to rich PCI, engine-out CO and THC emissions increase significantly. The relative contributions of individual species also change; increasing methane/THC, acetylene/THC and CO/THC ratios indicate a richer combustion zone and a reduction in engine-out hydrocarbon incremental reactivity.
Technical Paper

Analysis of Load and Speed Transitions in an HCCI Engine Using 1-D Cycle Simulation and Thermal Networks

2006-04-03
2006-01-1087
Exhaust gas rebreathing is considered to be a practical enabler that could be used in HCCI production engines. Recent experimental work at the University of Michigan demonstrates that the combustion characteristics of an HCCI engine using large amounts of hot residual gas by rebreathing are very sensitive to engine thermal conditions. This computational study addresses HCCI engine operation with rebreathing, with emphasis on the effects of engine thermal conditions during transient periods. A 1-D cycle simulation with thermal networks is carried out under load and speed transitions. A knock integral auto-ignition model, a modified Woschni heat transfer model for HCCI engines and empirical correlations to define burn rate and combustion efficiency are incorporated into the engine cycle simulation model. The simulation results show very different engine behavior during the thermal transient periods compared with steady state.
Technical Paper

An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging

2006-04-03
2006-01-1518
Chemiluminescence imaging has been applied to investigate the naturally occurring charge stratification in an HCCI engine. This stratification slows the pressure-rise rate (PRR) during combustion, making it critical to the high-load operating limit of these engines. Experiments were conducted in a single-cylinder HCCI engine modified with windows in the combustion chamber for optical access. Using this engine, chemiluminescence images were obtained from three different view angles. These included both single-shot images with intensified CCD cameras and high-speed (20kHz) sequences with an intensified CMOS video camera. The engine was fueled with iso-octane, which has been shown to be a reasonable surrogate for gasoline and exhibits only single-stage ignition at these naturally aspirated conditions. The chemiluminescence images show that the HCCI combustion is not homogeneous but has a strong turbulent structure even when the fuel and air are fully premixed prior to intake.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

Diesel Engine Combustion Modeling Using the Coherent Flame Model in Kiva-II

1993-03-01
930074
A flamelet model is used to calculate combustion in a diesel engine, and the results are compared to experimental data available from an optically accessible, direct-injection diesel research engine. The 3∼D time-dependent Kiva-II code is used for the calculations, the standard Arrhenius combustion model being replaced by an ignition model and the coherent flame model for turbulent combustion. The ignition model is a four-step mechanism developed for heavy hydrocarbons which has been previously used for diesel combustion. The turbulent combustion model is a flamelet model developed from the basic ideas of Marble and Broadwell. This model considers local regions of the turbulent flame front as interfaces called flamelets which separate fuel and oxidizer in the case of a diffusion flame. These flamelets are accounted for by solving a transport equation for the flame surface density, i.e., the flame area per unit volume.
Technical Paper

Design Optimization of the Piston Compounded Adiabatic Diesel Engine Through Computer Simulation

1993-03-01
930986
This paper describes the concept and a practical implementation of piston-compounding. First, a detailed computer simulation of the piston-compounded engine is used to shed light into the thermodynamic events associated with the operation of this engine, and to predict the performance and fuel economy of the entire system. Starting from a baseline design, the simulation is used to investigate changes in system performance as critical parameters are varied. The latter include auxiliary cylinder and interconnecting manifold volumes for a given main cylinder volume, auxiliary cylinder valve timings in relation to main cylinder timings, and degree of heat loss to the coolant. Optimum designs for either highest power density or highest thermal efficiency (54%) are thus recommended. It is concluded that a piston-compounded adiabatic engine concept is a promising future powerplant.
Technical Paper

Diesel Engine Combustion Studies in a Newly Designed Optical-Access Engine Using High-Speed Visualization and 2-D Laser Imaging

1993-03-01
930971
Two-dimensional laser-sheet imaging and high-speed cinematography have been used to examine the combustion process in a newly constructed, optically accessible, direct-injection Diesel engine of the “heavy-duty” size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. An extended piston with piston-crown window and a window in the cylinder head allow the processes in the combustion bowl and squish region to be observed simultaneously. Windows at the top of the cylinder wall provide orthogonal-optical access with the capability of allowing the laser sheet to enter the cylinder along the axis of the spray. Finally, this new engine incorporates a unique separating cylinder liner that permits rapid cleaning of the windows. Studies were performed at a medium speed (1200 rpm) using a Cummins closed-nozzle fuel injector.
X